Mansoura University
Faculty of Engineering
Specific Programs.
Course code:
MATH003/MTH003

Final Examination
Mathematics II
The counted marks: 50
(50% of the total mark)

Year: Level 000 Date: June 2015 Time: 2 hours

Examiner: Dr. Reda Abdo Dr. Samir Shamseldee

من فضلك ابدأ حل التعليلية من اليسار (the cover ) والتكامل من اليمين

# Question 1 [12 marks] Complete the following

- (1) The conic section  $x^2 + 4y^2 2x 3 = 0$  is named ....., its center located at ...., and the length of the latus rectum equals .....
- (2) Given the parabola  $x^2 2x + 8y 15 = 0$ . The vertex is ....., the equation of its axis is ....., and the coordinates of its focus is ......
- (3) Given the two circles  $x^2 + y^2 = 4$  and  $x^2 + y^2 6y + k = 0$ . The two circles
  - cut orthogonally if  $k = \dots$
  - touch internally if  $k = \dots$
  - have a radical axis y = 3 if  $k = \dots$
- (4) If a line L passes through the point (2,3,4) and has the following properties:
  - intersects the plane Ax + By + z = 6 at the point (1, 2, 2)
  - perpendicular to the plane 2x By + Cz = 1

then  $A = \dots$ ,  $B = \dots$ , and  $C = \dots$ 

#### Question 2 [13 marks]

- (a) [8 marks] True or False: (justify the answer. Zero credit for no explanation)
  - (1) The eccentricity of the conic  $x^2 4y^2 2x 16y + 1 = 0$  equals 0.6
  - (2) The area bounded by the region  $x^2 + y^2 \le 4$  equals the area bounded by the region  $x^2 + y^2 6x + 5 \le 0$ .
  - (3) The three points (-1, 3, 2), (-4, 2, -2) and (5, 5, 10) are collinear
  - (4) The two lines  $L_1$  and  $L_2$  are coplanar, where

$$L_1: x = \frac{y+3}{2} = \frac{z+1}{3}$$
 and  $L_2: \frac{x-3}{2} = y = \frac{z-1}{-1}$ 

- (b) [5 marks] Given the plane  $\pi$ : 2x y + z + 3 = 0, and the point P = (1, 3, 4). The point P does not lie in the plane  $\pi$ . Find:
  - (1) The equation of a line L passing through P and perpendicular to the plane  $\pi$
  - (2) The coordinates of the point Q that lies on the line L and in the plane  $\pi$  as well
  - (3) The coordinates of the point S which is the reflection of P in the plane  $\pi$



#### Question 3 13 marks

A) Complete each of the following

- 4
- I) The <u>method</u> of evaluating the integral  $\int \frac{\cos x}{\sin^3 x 1} dx$  is .....
- II) The <u>substitution</u> used to evaluate the integral  $\int \frac{x^2}{(4+x^2)^{5/2}} dx$  is ...... or ......
- III) If  $\int \tan^2 x \cosh(f(x)) dx = \sinh(f(x)) + c$  then  $f(x) = \dots$
- IV)  $\int_{-\pi}^{\pi} |\sin x| dx = \int_{0}^{-\pi} \dots dx + \int_{0}^{\pi} \dots dx$
- B) Determine whether  $\int_0^{\pi/2} \sec x \ dx$  converges or diverges.

3

C) Find  $\int \frac{\tan^{-1} x + \ln(\tan^{-1} x)}{1 + x^2} dx$ 

3

**D)** For the curve  $f(x) = \int_x^1 u \sqrt{\cosh u} \ du$ ,

3

- I) Find f(1) and f(-1)
- II) Find the slope of the tangent to f(x) at x = 0.

### Question 4 12 marks

- A) I) Find the equation of the horizontal line bisecting the area in the fourth quadrant bounded by the curve  $y = \ln x$  and the coordinate axes.
  - II) Find the volume of the solid generated by revolving this area about y axis.
- 2
- B) The equation  $S = 2\pi \int_1^2 \cosh^{-1} x \ \sqrt{1 + (f'(x))^2} dx$  represents the area of a surface generated by revolving the arc y = f(x),  $1 \le x \le 2$  about x axis. Find the <u>length</u> of this arc.
- C) Using the definition of Laplace transform, find the value of  $L\{\sin x\}$

| 4 |
|---|
|   |

4

| $\int \frac{dx}{1 + x^2}$ $\tan^{-1} x$         | $\int \frac{dx}{1-x^2}$ $\tanh^{-1} x$                        | $\int \frac{dx}{x^2 - 1}$ $-\coth^{-1} x$                     |
|-------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| $\int \frac{dx}{\sqrt{1-x^2}}$ $\sin^{-1} x$    | $\int \frac{dx}{\sqrt{1+x^2}}$ $\sinh^{-1} x$                 | $\int \frac{dx}{\sqrt{x^2 - 1}}$ $\cosh^{-1} x$               |
| $\int \frac{dx}{x\sqrt{x^2 - 1}}$ $\sec^{-1} x$ | $\int \frac{dx}{x\sqrt{1-x^2}}$ $-\operatorname{sech}^{-1} x$ | $\int \frac{dx}{x\sqrt{1+x^2}}$ $-\operatorname{csch}^{-1} x$ |

| $\int \sin x  dx$ $\int \cos x  dx$ | -cos x                                                                                                                                       |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Atameasant of                     | sin x                                                                                                                                        |
|                                     |                                                                                                                                              |
| $\int sec^2 x \ dx$                 | tan x                                                                                                                                        |
| $\int csc^2 x \ dx$                 | -cot x                                                                                                                                       |
| $\int \sec x \tan x  dx$            | sec x                                                                                                                                        |
| $\int \csc x \cot x  dx$            | -csc x                                                                                                                                       |
| 2                                   | $\begin{array}{c c} x \\ \hline x \\ \hline \end{array} \begin{array}{c c} \int \csc^2 x \ dx \\ \hline \int \sec x \tan x \ dx \end{array}$ |

Best wishes

Dr. Reda Abdo Dr. Samir Shamseldeen

| $\int e^x dx$         | e <sup>x</sup> | $\int x^n dx$                | $x^{n+1}/(n+1)$ |
|-----------------------|----------------|------------------------------|-----------------|
| $\int a^x dx$         | $a^x/\ln a$    | $\int dx$                    | x               |
| $\int \frac{1}{x} dx$ | ln x           | $\int \frac{1}{\sqrt{x}} dx$ | $2\sqrt{x}$     |

#### 3<sup>rd</sup> Question [14 marks]

- (a) Graph and write the equation of parabola which has focus at (0, -2) and a directrix x = 2. [2 marks]
- (b) Find the <u>Distance</u> between the point Q(2, -3, 1) and the line  $\frac{x-3}{2} = \frac{y+5}{1} = \frac{z-1}{-2}$ . [2 marks]
- (c) For the sphere  $S: x^2 + y^2 + z^2 = 25$  and the plane  $\varphi: 2x + y + 2z 9 = 0$ . Find the <u>center  $P_0$ </u> and the <u>radius r</u> of the circle of intersection of the plane and the sphere. [3 marks]
- (d) i) Graph and write the name of each of the following surfaces

$$S_1: z = x^2.$$
  $S_2: 2x + 3y = 6.$ 

$$S_3$$
:  $\frac{(x-1)^2}{4} - \frac{(y-3)^2}{9} + \frac{(z-4)^2}{4} = 1$ 

- ii) Describe the traces in planes x=3 and y=3 with the surface  $S_3$ .
- iii) Describe the trace in plane x=0 with the surface  $S_2$ .

#### 4th Question [11 marks]

(a) Complete the following:

i) 
$$\int \frac{\cot x}{\sqrt{1+\ln\sin x}} dx = \dots$$

ii) If f(x) is an even function and  $\int_0^1 f(x) dx = 5$  &  $\int_2^1 f(x) dx = 4$ 

then 
$$\int_{-1}^{1} f(x) dx = \dots$$
,  $\int_{-2}^{2} (\sin x + f(x)) dx = \dots$ ,  $\int_{0}^{2} f(x) dx = \dots$  and  $\int_{-2}^{2} (\sin x + f(x)) dx = \dots$ 

(b) Evaluate the following integrals

$$I_1 = \int \frac{2x-1}{\sqrt{x^2 - 2x + 2}} dx$$
  $I_2 = \int \frac{6}{x^3 + x^2 - 2x} dx$ 

(b) (i) Find the length of the arc of the curve

$$x = \cos(t) + t\sin(t), \quad y = \sin(t) - t\cos(t), \quad 0 \le t \le \pi$$

(ii) Find the integral that represents the area of the surface generated by rotating the arc about

1) Line 
$$x = 1$$
.

2) Line 
$$y = 2$$
.

With my best wishes

Dr. Ayman Gomaa

Mansoura University Faculty of Engineering Specific programs

Course title : Calculus 2

Course code: MATH003 / MTH003

Final term Examination Mathematics(2)

Year: level 000 students Date: Sat, 28 May 2016 Duration: 2 Hours

No. of Pages: (1) Tow-sided paper

Total marks: 50 marks

#### Question (1) [13 marks]

a) [7 marks] For the following conic equation

$$x^2 + 4y^2 - 6x - 8y = 3$$

Complete the following table

(من فضلك في كراسة الإجابة ضع الاجابات بالترتيب وفي جدول )

| 1 | Equation in standard form and name                                                         | A south of several laborators |
|---|--------------------------------------------------------------------------------------------|-------------------------------|
| 2 | Center and vertices                                                                        |                               |
| 3 | Eccentricity                                                                               |                               |
| 4 | Foci                                                                                       |                               |
| 5 | Directrices                                                                                |                               |
| 6 | Graph of the conic                                                                         |                               |
| 7 | The area of a triangle $OAB$ , where $O$ is the origin, $A$ and $B$ are the conic vertices |                               |

b) [6 marks] Given the surface equation

$$x^2 + 2z^2 = y - 1$$

- 1) State the name of the surface and determine its (vertex/centre) and its axis
- 2) Describe the <u>traces</u> in the xy plane, xz plane, y = 1 and y = 5 planes
- 3) Graph the surface

## Question (2) [12 marks]

a) [6 marks] Evaluate the following integrals (if exist)

1) 
$$\int_{1}^{2} \sqrt{2x - x^2} \ dx$$

$$2) \int_0^\infty \frac{1}{\sqrt{x}} dx$$

b) [6 marks] A region is bounded by

$$y = e^x$$
,  $y = 1$  and  $x = 2$ 

- 1) Determine the area of that region
- 2) Determine the volume resulting from revolving that region about

i) 
$$x - axis$$